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Abstract

Emissions of harmful substances into the atmosphere are a serious environmental
concern. In order to understand and predict their effects, it is necessary to estimate the
exact quantity and timing of the emissions, from sensor measurements taken at dif-
ferent locations. There exists a number of methods for solving this problem. However,5

these existing methods assume Gaussian additive errors, making them extremely sen-
sitive to outlier measurements. We first show that the errors in real-world measurement
datasets come from a heavy-tailed distribution, i.e., include outliers. Hence, we propose
to robustify the existing inverse methods by adding a blind outlier detection algorithm.
The improved performance of our method is demonstrated on a real dataset and com-10

pared to previously proposed methods. For the blind outlier detection, we first use an
existing algorithm, RANSAC, and then propose a modification called TRANSAC, which
provides a further performance improvement.

1 Introduction

1.1 Motivation15

Emissions of harmful substances into the atmosphere occur all the time. Examples in-
clude nuclear power plant accidents, volcano eruptions, and releases of greenhouse
gases. However, these emissions are difficult to quantify. Depending on the scenario,
measurement networks on scales from local to global may be needed. A robust tech-
nical framework to estimate the emissions properly from such measurements is also20

necessary.
This technical framework consists of three elements: measurements, atmospheric

dispersion models, and inverse methods tailored to this specific linear inverse problem.
There has been a clear effort in deploying more reliable, precise, and extended sen-

sor networks (CTBTO, 2014). Also, there has been an evident development of precise25
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atmospherical dispersion models (Holmes and Morawska, 2006). However, inverse
methods are still in a relatively early stage of development.

These inverse methods are technically complex, and require a multidisciplinary ap-
proach; collaboration among researchers from different fields is necessary for further
advances.5

1.2 Related work

Atmospheric dispersion models such as Eulerian or Lagrangian particle dispersion
models (LPDMs) (Zannetti, 1990) allow us to relate the source to the measurements in
a linear way:

y = Ax+n, (1)10

where y is the measurement vector, x is the source term, A is the transport matrix, and
n is the measurement error.

LPDMs have some advantages with respect to the Eulerian ones: they can have in-
finite temporal and spatial resolution; they avoid the artificial initial diffusion of a point
source in the corresponding cell and the advection numerical errors; and they are com-15

putationally more efficient (Zannetti, 1990).
There are only a few freely available, open source implementations of LPDMs. FLEX-

PART (Stohl et al., 2005) is one of them. It has been used and validated in a large
number of studies on long-range atmospheric transport (Stohl et al., 1998). Here we
use it to derive A, which is an estimate of the true transport matrix A.20

It is clear from Eq. (1) that estimating the source means solving a linear inverse prob-
lem. Most environmental scientists use a least-squares approach with the Tikhonov
(`2-norm) regularization, or variants of this method, to recover an estimate x̂ of the
source:

x̂ = arg min
x

‖Ax−y‖2 + λ‖x‖2, (2)25
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where λ ≥ 0 is the regularization parameter.
For example, in Seibert (2001), the Tikhonov regularization is combined with

a smooth first derivative constraint:

x̂ = arg min
x

‖Ax−y‖2 + λ‖x‖2 +β‖Dx‖2. (3)

Also, an a priori solution can be introduced to the Tikhonov regularization such as in5

(Stohl et al., 2012):

x̂ = arg min
x

‖Ax−y‖2 + λ‖x−xa‖2, (4)

In Winiarek et al. (2012), the Tikhonov regularization is used with a non-negative
constraint. A slightly different approach is the use of a sparsity constraint together with
a non-negative constraint as in Martinez-Camara et al. (2013). Yet another point of10

view is given in Bocquet (2007), where both the source and the error distributions are
estimated at the same time.

All these approaches minimize the energy of the disagreement between the model
and the observations, while at the same time keeping the energy of the solution in
check. While this is a reasonable approach, no metrics of real performance are (or can15

be) given in most of these studies, simply because no knowledge of the ground truth is
available. This fact made it impossible to evaluate the true performance of any of these
approaches.

However, a few controlled tracer experiments have been performed – the most im-
portant ones in Europe and in the US. They present exceptional opportunities to study20

model and measurement errors, as well as to develop and test the various source
recovery algorithms.

The European Tracer EXperiment (ETEX) (Nodop et al., 1998) was established to
evaluate the validity of long-range transport models. Perfluorocarbon (PFC) tracers
were released into the atmosphere in Monterfil, Brittany, in 1994. Air samples were25

taken at 168 stations in 17 European countries for 72 h after the release. The data
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collected in the ETEX experiment and the correspondent matrix estimated by FLEX-
PART (hourly source discretisation, 120 unknowns) are used for several purposes in
this paper. We will refer to this data as the ETEX dataset.

1.3 Contributions

In this paper we show that the errors present in a source estimation problem come from5

a heavy-tailed distribution, which implies the presence of outliers in the measurement
dataset. Typical source estimation algorithms like Eq. (2) assume Gaussian additive
errors. This incorrect assumption makes them highly sensitive to outliers. In fact, if the
outliers are removed, the source estimation using Eq. (2) improves substantially.

Hence, we propose to combine Eq. (2) with algorithms to detect and remove outliers10

blindly, i, e. without any knowledge of the ground truth. First we use a well-known
algorithm for this task, RANdom SAmple Consensus (RANSAC) (Fischler and Bolles,
1981), and study its performance. Next, we propose a new algorithm which overcomes
some of the weaknesses of RANSAC, and test its performance. The efficiency of both
algorithms is demonstrated on a real-world dataset, and their performance is evaluated15

and compared to other existing methods.

2 Non-Gaussian noise

Given A, the estimate of the transport matrix produced by FLEXPART, the forward
model (Eq. 1) now becomes

y = Ax+e (5)20

where e is an additive error term that encompasses both the model and measurement
errors.

In the ETEX experiment we have access to the measurements y, the true source
x, and the estimated transport matrix A. This permits us to study the errors e. Let us
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model the components ei of the vector e as random and independent and identically
distributed. We can approximate their empirical probability distribution by plotting the
histogram of the elements ei .

Figure 1 shows graphically that the error has a heavy-tailed distribution. The dis-
tribution clearly deviates from a Gaussian one. This is confirmed by calculating the5

excess kurtosis of the sample distribution. The value of g = 123.64 indicates that the
underlying distribution is strongly super-Gaussian.

Using the `2 norm in the loss function in Eq. (2) is optimal when the additive errors
are Gaussian – which is not our case. Even worse, this loss function is very sensitive
to outliers, just like the ones present in the heavy-tailed distribution shown in Fig. 1.10

Hence, the performance of Eq. (2) and its variants could be improved by additional
processing, aimed at removing and/or marginalizing the outliers. In the present paper
we propose and demonstrate a novel scheme for this additional processing.

3 Outlier detection

Imagine that we have an oracle which reveals to us the measurements correspond-15

ing to the largest errors (i.e. the outliers). If we remove these measurements from the
dataset, the performance of Eq. (2) in terms of the reconstruction error or mean square
error (MSE) improves significantly1. In order to illustrate this, we remove the measure-
ments associated with the largest errors (sorted by magnitude) and observe the effect
on the MSE. Figure 2 shows how the MSE decreases as more and more outliers are20

removed. Some oscillations may occur due to outlier compensation effects.
However, in a real-world problem, we do not have such an oracle. The question

becomes: how could one locate the outliers blindly?

1The MSE is defined as 1
n‖x− x̂‖2

2, where x̂ is the estimated source, x is the real source
(ground truth), and n is the number of elements in x.
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3.1 RANSAC

One of the simplest and most popular algorithms to localize outliers blindly is RANSAC.
RANSAC has been widely and successfully used, mainly by the computer vision com-
munity. Figure 3 illustrates the operation of RANSAC, and Algorithm 1 describes it in
pseudocode.5

Given a dataset y with m measurements, select randomly a subset y′ containing p
measurements. Typically, n < p <m, where n is the number of unknowns in the prob-
lem. In Fig. 3, m = 8 and p = 2, and the subset is shown in red diamonds. Using Eq. (2)
and y

′, estimate x̂, and then compute the residual r = Ax̂−y. Now we can count how
many of the original samples are inliers. For a given tolerance η, the set of inliers is de-10

fined as L = {q ∈ {1,2, . . . ,m} | η ≥ (r [q])2}. Repeat this process N times and declare
the final solution x

∗ to be that estimate x̂ which produced the most inliers. In Fig. 3,
N = 2.

Note that other regularizations can be used instead of Eq. (2). Here we use the
Tikhonov regularization because it is simple, general, and most other existing ap-15

proaches are based on it. Nevertheless, if some properties of the source are known
a priori (e.g., sparsity or smoothness), this step of the algorithm can be adapted ac-
cordingly.

At the stage where the N possible solutions x̂ have been generated, what RANSAC
actually tries to do is to select the solution x

∗ with the smallest MSE. However, in a real20

world problem the ground-truth is unknown, so we do not have access to the MSE itself.
So, as mentioned above, RANSAC overcomes this difficulty by using an indirect metric
of the MSE: it assumes that the number of inliers is inversely proportional to the MSE.
Figure 3 depicts the intuition behind this in a simple 1-D problem: the superior solution
(subset 1) produces more inliers than the inferior solution (subset 2). Thus, RANSAC25

maximizes the number of inliers, in hopes that this also minimizes the estimation error.
As we will see in the following sections, if the optimal value for the threshold parame-

ter η is known and used, using RANSAC as a pre-processing stage for outlier removal
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before applying Eq. (2) significantly improves the overall performance (compared to us-
ing only Eq. 2 with no outlier removal pre-processing). Unfortunately, the performance
of RANSAC depends strongly on the parameter η, and finding the optimal value of η is
an open problem.

Furthermore, the assumed inverse proportionality between the number of inliers and5

the MSE does not always hold in the presence of critical measurements. This is the
case in the ETEX dataset, as we can see in Fig. 4a.

3.2 Critical measurements

We identify critical measurements as those which have the largest influence in the
source estimation process. A quantitative measure of this influence is the Cook’s dis-10

tance (Cook, 1977). Figure 5 shows the Cook’s distance of the ETEX measurements.
It is easy to observe the peak that identifies the critical measurements.

Let us consider again the ETEX dataset, the set of N solutions x̂ that RANSAC gen-
erates, and their corresponding residuals r . It is interesting to note that the solutions
x̂ with most inliers (the superior solutions according to RANSAC) have high residu-15

als at exactly the critical measurements. This is shown in Fig. 6. In other words, by
considering the critical measurements as outliers, these solutions achieve more inliers.

RANSAC assumes that all the measurements have the same influence: it just wants
to maximize the number of inliers, and does not care about which exact measurements
are the inliers. This is why it fails in this case and the inverse proportionality between20

the number of inliers and the MSE does not hold.
In summary, RANSAC operates reliably when all the measurements are of similar

importance, because the inverse proportionality between MSE and the number of in-
liers holds. However, when critical measurements are present, this proportionality does
not hold, and RANSAC fails.25
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3.3 TRANSAC

In order to avoid the weakness of the standard RANSAC algorithm, we propose an
alternative indirect metric to discriminate solutions with small MSE: the total residual
ε = ‖Ax̂−y‖2. By replacing the number of inliers by the total residual metric, we create
the first step of the Total residual RANdom SAmple Consensus (TRANSAC) algorithm.5

The second step consists in a voting stage. Both are described in Algorithm 2 in pseu-
docode.

The total residual is directly proportional to the MSE of reconstruction. Unlike the
number of inliers, this proportionality is conserved also when critical measurements
are present in the dataset (Fig. 4c and d). In a real-life problem, where we do not10

have access to the ground truth, we do not know if critical measurements are present.
Hence, we need a robust algorithm like TRANSAC. In addition, TRANSAC does not
depend on the threshold η.

The proportionality between the total residual and the reconstruction error is not
perfect, as we can see in the scatter plot of Fig. 4d. Even if a candidate solution has15

the smallest total residual, it is not guaranteed to be the solution with the smallest MSE.
The intention of the voting stage is, using the candidate solutions with a total residual
under a certain threshold, to come up with the best possible final solution.

Intuitively, the solutions with the smallest total residual (i.e., smallest MSE) are gen-
erated using almost outlier-free random subsets of measurements y

′. We refer to these20

as the good subsets. Outliers can appear sporadicly in some of these good subsets,
but the same outlier is extremely unlikely to appear in all of them. Hence, in the voting
stage we select the measurements that all the good subsets have in common, or in
other words, exclude any measurements that appear very infrequently.

Thus, we first select the subsets y
′ associated with candidate solutions with a total25

residual smaller than a certain threshold, ε < β. Then, for each measurement we count
how many times it appears in these good subsets. Finally, we select the M measure-
ments with the largest frequency of occurrence.
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4 Results

4.1 TRANSAC

We now perform two experiments to demonstrate various aspects of TRANSAC.

4.1.1 Sanity check

In Sect. 3.3 we confirmed the expected behaviour of the first stage of TRANSAC: we5

showed that the total residual is directly proportional to the MSE. Let us check now
the second stage, the voting. To do so, let us suppose that during the voting we have
access to the MSE of every candidate solution x̂. Then, we would of course select the
solutions which in fact have the smallest MSE, and use them to build the histogram. We
run this modified TRANSAC with the dataset without critical measurements. Figure 7a10

shows the MSE obtained for different values of the parameter M.
The dashed line on the right indicates the maximum possible value of M, such that

M =m, which corresponds to using the whole measurement dataset. The dashed line
on the left indicates the minimum possible value, M = n, and corresponds to using
as many measurements as unknowns. The red horizontal line indicates the MSE of15

the solution obtained by using just the Tikhonov regularization without TRANSAC, i.e.,
when M =m.

We can observe that the MSE of the solution increases as M increases. This is to be
expected: as M grows, more outliers are included in the dataset that is used to obtain
x
∗, and its MSE increases. We note that the results curve is non-decreasing, because20

in this particular experiment we have access to the MSE and the histogram h is built
from the actual best candidate solutions.

4.1.2 Actual ETEX

In this subsection, the performance of the complete TRANSAC algorithm is examined.
Let us consider first the dataset without critical measurements. As in the sanity check25
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above, TRANSAC is run for different values of M. The results are shown in Fig. 7b. We
observe that the MSE increases as M increases, as before, and the maximum MSE
still occurs at M =m. This is reassuring: even if we do not find the optimal value for
the parameter M, we will improve the solution (with respect to using only the Tikhonov
regularization) by taking any n <M <m. Notice that the minimum MSE again occurs5

when M = n.
Let us examine now the whole dataset, including the critical measurements. Fig-

ure 7c shows the results. We can observe that, again, the maximum MSE occurs
at M =m. On the other hand, the minimum MSE does not occur at n, but rather at
M = 330.10

These results show that TRANSAC clearly improves the performance of the
Tikhonov regularization in both cases: with and without critical measurements.

4.2 Outlier removal

As explained in Sect. 3, RANSAC and TRANSAC are blind outlier detection algorithms
that can be combined with different regularizations in order to improve their results.15

In this section we combine RANSAC and TRANSAC with two different regularizations
previously used in the literature, Eqs. (2) and (3), and study their performance. As be-
fore, we use the ETEX dataset with and without the critical measurements. The results
are shown in Fig. 8. It is important to note that all these results were generated using
the optimal values of all the parameters (λ, η, β, M) that were found experimentally.20

Figure 9 gives a more qualitative assessment of the results.
First, with and without critical measurements, the outlier removal stage improves

the performance of both regularizations. Hence, our idea of removing outliers, outlined
in Sect. 2, indeed does lead to improved performance, regardless of critical measure-
ments or type of regularization. Next, in all cases TRANSAC shows higher performance25

than RANSAC. Therefore, our proposed modification of the metric, and the addition of
the voting stage result in improved performance, as expected.
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5 Conclusions

In this work we showed that the additive errors present in the ETEX dataset come from
a heavy-tailed distribution. This implies the presence of outliers. Existing source esti-
mation algorithms typically assume Gaussian additive errors. This assumption makes
such existing algorithms highly sensitive to outliers. We showed that, if the outliers are5

removed from the dataset, the estimation given by these algorithms improves substan-
tially.

However, in a real life problem, we do not know which of the measurements are
outliers. Hence, we do have to remove them in a blind fashion. For this purpose we
proposed RANSAC, a well-known blind outlier detection algorithm. We then showed10

that RANSAC unfortunately strongly depends on the chosen tolerance parameter, and
it is sensitive to critical measurements. To overcome these difficulties, we created
TRANSAC, a modification of RANSAC which also includes a voting stage.

To demonstrate the efficiency of these methods in a real-world problem, we used
the ETEX tracer experiment dataset. The source was recovered first with two previ-15

ously proposed source estimation algorithms that assume Gaussian additive errors
(Eqs. 2 and 3). Then it was recovered again with our algorithms that use RANSAC and
TRANSAC. The results clearly display how the source estimation improves if an out-
lier detection algorithm is used. They also show that the performance of our proposed
algorithm TRANSAC clearly exceeds the performance of RANSAC in every case.20
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6 MARTINEZ-CAMARA ET AL.: A robust method for inverse transport modelling using blind outlier detection

Algorithm 1 RANSAC

INPUT: y ∈R
m, A ∈R

m×n, λ, η, N , p

Require: λ≥ 0,N > 0,η ≥ 0,p≤m

L∗← ∅
x∗← 0 ∈ R

n

r← 0 ∈ R
m

k← 0 ∈ N
p

y′← 0 ∈R
p

A′← 0 ∈ R
p×n

for s= 1 to N do

k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x

‖A′x−y′‖2
2
+λ‖x‖2

2

r←Ax̂−y

L← {q ∈ {1,2, · · · ,m} | η ≥ (r[q])2}
if #L>#L∗ then

L∗←L
x∗← x̂

end if

end for

return x∗

Algorithm 2 TRANSAC

INPUT: y ∈R
m, A ∈R

m×n, λ, N , p, M , β

Require: λ≥ 0,N > 0,p≤m,n≤M ≤m,β ≥ 0
ǫ← 0 ∈R

N

k← 0 ∈ N
p

K← 0 ∈ N
p×N

y′← 0 ∈R
p

A′← 0 ∈ R
p×n

G ← ∅
h← 0 ∈R

m

b← 0 ∈R
M

for s= 1 to N do

k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x

‖A′x−y′‖2
2
+λ‖x‖2

2

ǫ[s]← ‖Ax̂−y‖2
K[ :,s]← k

end for

G ← {q ∈ {1,2, · · · ,N} | ǫ[q]≤ β}
KG ←K[:,G]
h[k]← how many times k appears in KG , ∀k ∈
{1,2, · · · ,m}
b← indices of the M largest elements of h

y∗← y[b]
A∗←A[b, :]
x∗← argmin

x

‖A∗x−y∗‖2
2
+λ‖x‖2

2

return x∗
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Fig. 1. Histogram of the additive error e. For clarity, the zero-error

bin has been omitted here.
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Fig. 2. MSE of reconstruction obtained using (2). The strongest out-

lier measurements (the ones associated with the largest errors) have

been removed manually. Notice that the MSE decreases as more

outliers are removed.
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6 MARTINEZ-CAMARA ET AL.: A robust method for inverse transport modelling using blind outlier detection

Algorithm 1 RANSAC

INPUT: y ∈R
m, A ∈R

m×n, λ, η, N , p

Require: λ≥ 0,N > 0,η ≥ 0,p≤m

L∗← ∅
x∗← 0 ∈ R
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m
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p
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p×n

for s= 1 to N do
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A′←A[k, :]
x̂← argmin

x

‖A′x−y′‖2
2
+λ‖x‖2

2

r←Ax̂−y

L← {q ∈ {1,2, · · · ,m} | η ≥ (r[q])2}
if #L>#L∗ then

L∗←L
x∗← x̂

end if

end for

return x∗

Algorithm 2 TRANSAC

INPUT: y ∈R
m, A ∈R

m×n, λ, N , p, M , β

Require: λ≥ 0,N > 0,p≤m,n≤M ≤m,β ≥ 0
ǫ← 0 ∈R

N
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K← 0 ∈ N
p×N

y′← 0 ∈R
p

A′← 0 ∈ R
p×n

G ← ∅
h← 0 ∈R
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b← 0 ∈R
M

for s= 1 to N do

k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x

‖A′x−y′‖2
2
+λ‖x‖2

2

ǫ[s]← ‖Ax̂−y‖2
K[ :,s]← k

end for

G ← {q ∈ {1,2, · · · ,N} | ǫ[q]≤ β}
KG ←K[:,G]
h[k]← how many times k appears in KG , ∀k ∈
{1,2, · · · ,m}
b← indices of the M largest elements of h

y∗← y[b]
A∗←A[b, :]
x∗← argmin

x

‖A∗x−y∗‖2
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return x∗
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Fig. 2. MSE of reconstruction obtained using (2). The strongest out-

lier measurements (the ones associated with the largest errors) have

been removed manually. Notice that the MSE decreases as more

outliers are removed.
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6 MARTINEZ-CAMARA ET AL.: A robust method for inverse transport modelling using blind outlier detection

Algorithm 1 RANSAC

INPUT: y ∈R
m, A ∈R

m×n, λ, η, N , p

Require: λ≥ 0,N > 0,η ≥ 0,p≤m

L∗← ∅
x∗← 0 ∈ R
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r← 0 ∈ R
m

k← 0 ∈ N
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y′← 0 ∈R
p

A′← 0 ∈ R
p×n

for s= 1 to N do

k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x

‖A′x−y′‖2
2
+λ‖x‖2

2

r←Ax̂−y

L← {q ∈ {1,2, · · · ,m} | η ≥ (r[q])2}
if #L>#L∗ then

L∗←L
x∗← x̂

end if

end for

return x∗

Algorithm 2 TRANSAC

INPUT: y ∈R
m, A ∈R

m×n, λ, N , p, M , β

Require: λ≥ 0,N > 0,p≤m,n≤M ≤m,β ≥ 0
ǫ← 0 ∈R
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K← 0 ∈ N
p×N

y′← 0 ∈R
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A′← 0 ∈ R
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k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x

‖A′x−y′‖2
2
+λ‖x‖2

2

ǫ[s]← ‖Ax̂−y‖2
K[ :,s]← k

end for

G ← {q ∈ {1,2, · · · ,N} | ǫ[q]≤ β}
KG ←K[:,G]
h[k]← how many times k appears in KG , ∀k ∈
{1,2, · · · ,m}
b← indices of the M largest elements of h

y∗← y[b]
A∗←A[b, :]
x∗← argmin

x

‖A∗x−y∗‖2
2
+λ‖x‖2

2

return x∗
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Fig. 2. MSE of reconstruction obtained using (2). The strongest out-

lier measurements (the ones associated with the largest errors) have

been removed manually. Notice that the MSE decreases as more

outliers are removed.

Figure 1. Histogram of the additive error e. For clarity, the zero-error bin has been omitted here.
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6 MARTINEZ-CAMARA ET AL.: A robust method for inverse transport modelling using blind outlier detection

Algorithm 1 RANSAC

INPUT: y ∈R
m, A ∈R

m×n, λ, η, N , p

Require: λ≥ 0,N > 0,η ≥ 0,p≤m

L∗← ∅
x∗← 0 ∈ R

n

r← 0 ∈ R
m

k← 0 ∈ N
p

y′← 0 ∈R
p

A′← 0 ∈ R
p×n

for s= 1 to N do

k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x

‖A′x−y′‖2
2
+λ‖x‖2

2

r←Ax̂−y

L← {q ∈ {1,2, · · · ,m} | η ≥ (r[q])2}
if #L>#L∗ then

L∗←L
x∗← x̂

end if

end for

return x∗

Algorithm 2 TRANSAC

INPUT: y ∈R
m, A ∈R

m×n, λ, N , p, M , β

Require: λ≥ 0,N > 0,p≤m,n≤M ≤m,β ≥ 0
ǫ← 0 ∈R

N

k← 0 ∈ N
p

K← 0 ∈ N
p×N

y′← 0 ∈R
p

A′← 0 ∈ R
p×n

G ← ∅
h← 0 ∈R

m

b← 0 ∈R
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for s= 1 to N do

k← p unique random integers from [1,m]
y′← y[k]
A′←A[k, :]
x̂← argmin

x

‖A′x−y′‖2
2
+λ‖x‖2

2

ǫ[s]← ‖Ax̂−y‖2
K[ :,s]← k

end for

G ← {q ∈ {1,2, · · · ,N} | ǫ[q]≤ β}
KG ←K[:,G]
h[k]← how many times k appears in KG , ∀k ∈
{1,2, · · · ,m}
b← indices of the M largest elements of h

y∗← y[b]
A∗←A[b, :]
x∗← argmin
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‖A∗x−y∗‖2
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Fig. 2. MSE of reconstruction obtained using (2). The strongest out-

lier measurements (the ones associated with the largest errors) have

been removed manually. Notice that the MSE decreases as more

outliers are removed.

Figure 2. MSE of reconstruction obtained using Eq. (2). The strongest outlier measurements
(the ones associated with the largest errors) have been removed manually. Notice that the MSE
decreases as more outliers are removed.
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MARTINEZ-CAMARA ET AL.: A robust method for inverse transport modelling using blind outlier detection 7

Subset #1 Subset #2

Step 1

Step 2

Steps 3&4

t t

Fig. 3. Visual representation of the functioning of RANSAC. Subset

1 and 2 represent two RANSAC iterations. The subset of measure-

ments selected by RANSAC in each iteration is represented with

red diamonds. Subset 1 contains one outlier. Hence, the solution

corresponding with this subset generates fewer inliers than subset

2, which is free of outliers.

Figure 3. Visual representation of the functioning of RANSAC. Subset 1 and 2 represent two
RANSAC iterations. The subset of measurements selected by RANSAC in each iteration is rep-
resented with red diamonds. Subset 1 contains one outlier. Hence, the solution corresponding
with this subset generates fewer inliers than subset 2, which is free of outliers.
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8 MARTINEZ-CAMARA ET AL.: A robust method for inverse transport modelling using blind outlier detection
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Fig. 4. Performance of RANSAC and TRANSAC. (a) and (b) show graphically the correlation between MSE of reconstruction and the

number of inliers. (c) and (d) show graphically the correlation between MSE of reconstruction and the total residual. To build (a) and (c)

the complete dataset was used, to build (b) and (d) the dataset without critical measurements was used. The diamond indicates the solution

obtained by the traditional Tikhonov regularization in (2), the star indicates the solution chosen by TRANSAC before the voting stage, the

square indicates the final solution of TRANSAC, and the hexagon the solution chosen by RANSAC.
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Fig. 5. Cook’s distance of the measurements in the ETEX dataset.

Figure 4. Performance of RANSAC and TRANSAC. (a) and (b) show graphically the correla-
tion between MSE of reconstruction and the number of inliers. (c) and (d) show graphically
the correlation between MSE of reconstruction and the total residual. To build (a) and (c) the
complete dataset was used, to build (b) and (d) the dataset without critical measurements was
used. The diamond indicates the solution obtained by the traditional Tikhonov regularization in
Eq. (2), the star indicates the solution chosen by TRANSAC before the voting stage, the square
indicates the final solution of TRANSAC, and the hexagon the solution chosen by RANSAC.
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Fig. 4. Performance of RANSAC and TRANSAC. (a) and (b) show graphically the correlation between MSE of reconstruction and the

number of inliers. (c) and (d) show graphically the correlation between MSE of reconstruction and the total residual. To build (a) and (c)

the complete dataset was used, to build (b) and (d) the dataset without critical measurements was used. The diamond indicates the solution

obtained by the traditional Tikhonov regularization in (2), the star indicates the solution chosen by TRANSAC before the voting stage, the

square indicates the final solution of TRANSAC, and the hexagon the solution chosen by RANSAC.
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Fig. 5. Cook’s distance of the measurements in the ETEX dataset.

Figure 5. Cook’s distance of the measurements in the ETEX dataset.
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Fig. 6. Residuals of two different source estimations: The blue

peaks correspond to the residual produced by the solution x̂ with

the largest number of inliers in Figure 4(a). The black arrows on the

top indicate where the two most critical measurements are localised.

Clearly, the residual corresponding to these two measurements is

much larger than the rest. The red peaks corresponds to the residual

produced by the solution x̂ with the smallest MSE in 4(a).

Figure 6. Residuals of two different source estimations: the blue peaks correspond to the resid-
ual produced by the solution x̂ with the largest number of inliers in Fig. 4a. The black arrows
on the top indicate where the two most critical measurements are localised. Clearly, the resid-
ual corresponding to these two measurements is much larger than the rest. The red peaks
corresponds to the residual produced by the solution x̂ with the smallest MSE in Fig. 4a.
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Fig. 7. Performance of TRANSAC combined with Tikhonov regularization. In the three plots, the red dashed line indicates the estimation

error given by typical Tikhonov (2). The dashed line on the right indicates M =m, the one on the left indicates M = n. Plot (a) shows

the results of the sanity check. As the selected number of measurements M increases, the MSE of the estimation decreases. Notice that

the maximum MSE corresponds with M =m. Plot (b) shows the results of applying TRANSAC to the ETEX dataset without critical

measurements. Again, the MSE increases in general with M, and the maximum MSE appears in M =m. Plot (c) shows the results of

applying TRANSAC to the whole ETEX dataset, critical measurements included. In this case the MSE not always increases with M, but the

maximum MSE still corresponds with M =m.
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Fig. 8. MSE of source estimated by different algorithms. The blue bars correspond with the original algorithms (2, 3). The violet bars

indicates that RANSAC is used for outlier removal, and the green ones that TRANSAC is used for outlier removal. The plot on the left was

generated using the whole ETEX dataset. The plot on the right was generated using the ETEX dataset without critical measurements.

Figure 7. Performance of TRANSAC combined with Tikhonov regularization. In the three plots,
the red dashed line indicates the estimation error given by typical Tikhonov (Eq. 2). The dashed
line on the right indicates M =m, the one on the left indicates M = n. (a) shows the results
of the sanity check. As the selected number of measurements M increases, the MSE of the
estimation increases. Notice that the maximum MSE corresponds with M =m. (b) shows the
results of applying TRANSAC to the ETEX dataset without critical measurements. Again, the
MSE increases in general with M, and the maximum MSE appears in M =m. (c) shows the
results of applying TRANSAC to the whole ETEX dataset, critical measurements included. In
this case the MSE not always increases with M, but the maximum MSE still corresponds with
M =m.
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Fig. 7. Performance of TRANSAC combined with Tikhonov regularization. In the three plots, the red dashed line indicates the estimation

error given by typical Tikhonov (2). The dashed line on the right indicates M =m, the one on the left indicates M = n. Plot (a) shows

the results of the sanity check. As the selected number of measurements M increases, the MSE of the estimation decreases. Notice that

the maximum MSE corresponds with M =m. Plot (b) shows the results of applying TRANSAC to the ETEX dataset without critical

measurements. Again, the MSE increases in general with M, and the maximum MSE appears in M =m. Plot (c) shows the results of

applying TRANSAC to the whole ETEX dataset, critical measurements included. In this case the MSE not always increases with M, but the

maximum MSE still corresponds with M =m.
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Fig. 8. MSE of source estimated by different algorithms. The blue bars correspond with the original algorithms (2, 3). The violet bars

indicates that RANSAC is used for outlier removal, and the green ones that TRANSAC is used for outlier removal. The plot on the left was

generated using the whole ETEX dataset. The plot on the right was generated using the ETEX dataset without critical measurements.

Figure 8. MSE of source estimated by different algorithms. The blue bars correspond with the
original algorithms (Eqs. 2 and 3). The violet bars indicates that RANSAC is used for outlier
removal, and the green ones that TRANSAC is used for outlier removal. The plot on the left
was generated using the whole ETEX dataset. The plot on the right was generated using the
ETEX dataset without critical measurements.
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Fig. 9. Source reconstructions given by the different algorithms. The plots on the left were generated combining (2) with RANSAC and

TRANSAC. The plots on the right were generated combining (3) with TRANSAC and RANSAC. The plots on the top were generated using

the ETEX dataset without critical measurements. The plots on the bottom were generated using the whole ETEX dataset.

Figure 9. Source reconstructions given by the different algorithms. The plots on the left were
generated combining Eq. (2) with RANSAC and TRANSAC. The plots on the right were gen-
erated combining Eq. (3) with TRANSAC and RANSAC. The plots on the top were generated
using the ETEX dataset without critical measurements. The plots on the bottom were generated
using the whole ETEX dataset.
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